OPT3 Is a Component of the Iron-Signaling Network between Leaves and Roots and Misregulation of OPT3 Leads to an Over-Accumulation of Cadmium in Seeds
نویسندگان
چکیده
Plants and seeds are the main dietary sources of zinc, iron, manganese, and copper, but are also the main entry point for toxic elements such as cadmium into the food chain. We report here that an Arabidopsis oligopeptide transporter mutant, opt3-2, over-accumulates cadmium (Cd) in seeds and roots but, unexpectedly, under-accumulates Cd in leaves. The cadmium distribution in opt3-2 differs from iron, zinc, and manganese, suggesting a metal-specific mechanism for metal partitioning within the plant. The opt3-2 mutant constitutively up-regulates the Fe/Zn/Cd transporter IRT1 and FRO2 in roots, indicative of an iron-deficiency response. No genetic mutants that impair the shoot-to-root signaling of iron status in leaves have been identified. Interestingly, shoot-specific expression of OPT3 rescues the Cd sensitivity and complements the aberrant expression of IRT1 in opt3-2 roots, suggesting that OPT3 is required to relay the iron status from leaves to roots. OPT3 expression was found in the vasculature with preferential expression in the phloem at the plasma membrane. Using radioisotope experiments, we found that mobilization of Fe from leaves is severely affected in opt3-2, suggesting that Fe mobilization out of leaves is required for proper trace-metal homeostasis. When expressed in yeast, OPT3 does not localize to the plasma membrane, precluding the identification of the OPT3 substrate. Our in planta results show that OPT3 is important for leaf phloem-loading of iron and plays a key role regulating Fe, Zn, and Cd distribution within the plant. Furthermore, ferric chelate reductase activity analyses provide evidence that iron is not the sole signal transferred from leaves to roots in leaf iron status signaling.
منابع مشابه
The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds.
The Arabidopsis thaliana AtOPT3 belongs to the oligopeptide transporter (OPT) family, a relatively poorly characterized family of peptide/modified peptide transporters found in archebacteria, bacteria, fungi, and plants. A null mutation in AtOPT3 resulted in embryo lethality, indicating an essential role for AtOPT3 in embryo development. In this article, we report on the isolation and phenotypi...
متن کاملOPT3 Is a Phloem-Specific Iron Transporter That Is Essential for Systemic Iron Signaling and Redistribution of Iron and Cadmium in Arabidopsis.
Iron is essential for both plant growth and human health and nutrition. Knowledge of the signaling mechanisms that communicate iron demand from shoots to roots to regulate iron uptake as well as the transport systems mediating iron partitioning into edible plant tissues is critical for the development of crop biofortification strategies. Here, we report that OPT3, previously classified as an ol...
متن کاملEffect of cadmium stress on morpho-physiological traits in garden cress and radish in an aeroponic system
Cadmium is a main toxic pollutant and poses a considerable threat to human health. In other to study the effect of Cd stress on traits of garden cress and radish, an experiment was conducted based on a completely randomized design in an aeroponic system. In this study CdCl2</sp...
متن کاملBio-Accumulation of Lead and Cadmium by Radish (Raphanus sativus) and Cress (Lepidium sativum) under Hydroponic Growing Medium
In order to investigate the accumulation and bio-absorption of lead and cadmium in radish and cress, the present study has been conducted in a completely randomized design in three replicates in a hydroponic growing medium. The first factor includes the plant type at two levels (radish and cress), and the second factor is consisted of lead (Pb) (first experiment) at two levels (50 and 100 mg/L)...
متن کاملBio-Accumulation of Lead and Cadmium by Radish (Raphanus sativus) and Cress (Lepidium sativum) under Hydroponic Growing Medium
In order to investigate the accumulation and bio-absorption of lead and cadmium in radish and cress, the present study has been conducted in a completely randomized design in three replicates in a hydroponic growing medium. The first factor includes the plant type at two levels (radish and cress), and the second factor is consisted of lead (Pb) (first experiment) at two levels (50 and 100 mg/L)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2014